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In this work the electro-osmotic flow in a rectangular channel such that the channel
height is comparable to its width is examined. Almost all previous work on the
electro-osmotic flow in a channel has been for the case where the channel width is
much greater than the channel height and the flow is essentially one-dimensional and
depends only on channel height. We consider a mixture of water or another neutral
solvent and a salt compound such as sodium chloride for which the ionic species are
entirely dissociated. Results are produced for the case where the channel height is
much greater than the electric double layer (EDL) (microchannel) and for the case
where the channel height is of the order of the width of the EDL (nanochannel).
Both symmetric and asymmetric velocity, potential and mole fraction distributions
are considered, unlike previous work on this problem. In the symmetric case where
all quantities are symmetric about the centreline, the velocity field and the potential
are identical as in the parallel-plate one-dimensional case. In the asymmetric case
corresponding to different wall potentials, the velocity and potential can be vastly
different and reversed flow can occur. The results indicate that the Debye layer
thickness is not a good measure of the actual width of the electric double layer. The
binary results are shown to compare well with experiment and asymptotic solutions
are also obtained for the case of a three-component mixture which may be applied
to biomolecular transport.

1. Introduction
In this paper, we consider the electro-osmotic flow problem in a rectangular channel

whose width and height are comparable. We consider an aqueous solution and a salt
compound such as sodium chloride. For strong electrolytes, the salt component
will be entirely dissociated so that nominally, the mixture has three components:
undissociated water, and positive and negative ions making up the salt component.

Almost all of the previous work on this problem has been for parallel-plate channels
where the height of the channel is much smaller than the width. If the channel walls
are charged, there is an induced electric potential due to the surplus of counter ions
near the wall. In this case there is no bulk motion of the fluid in the channel. If
electrodes are placed upstream and downstream in the desired flow direction, bulk
motion of the fluid will occur. The electro-osmotic problem for very small channel
heights of the order of the electric double layer has been investigated by a number
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of authors (Verwey & Verbeek 1948; Burgeen & Nakache 1964; Rice & Whitehead
1965; Levine 1975a; Qu & Li 2000). Much of this work requires the Debye–Huckel
approximation for small potentials to be valid and all of the aforementioned work
requires symmetry about the centreline of the parallel plate channel. In addition, all
of the previous work mentioned above requires that the ionic species be pairs of ions
of equal and opposite valence. Electro-osmotic flow in nanoscale tubes has also been
examined experimentally (Kemery, Steehler & Bohn 1998) and analytically (Levine
1975b).

Conlisk et al. (2002) solve the problem for the ionic mole fractions and the velocity
and potential for strong electrolyte solutions and consider the case where there is
a potential difference in the direction normal to the channel walls corresponding
in some cases to oppositely charged walls. They find that under certain conditions
reversed flow may occur in the channel which can significantly reduce the flow
rate. The validity of the Debye–Huckel approximation is investigated by Conlisk
(2005).

Rectangular channels of the type considered here have been investigated by
Yang & Li (1997) and Andreev, Dubrovski & Stepanov (1997). In both cases,
symmetric pairs of ionic species are considered. Yang & Li (1997) solve the fully
nonlinear problem using a Green’s function approach and include a pressure-driven
component which interacts with the electro-osmotic component. They also study the
electroviscous effect. Andreev et al. (1997) invoke the Debye–Huckel approximation
valid for small potentials and calculate the solution for the velocity by Fourier series
methods. They are primarily concerned with channels on the micron scale and all
of these papers are for the case of very thin electric double layers. While different
ζ -potentials on different walls are considered, no reversed flow is found to occur.
Neither of these papers consider an asymptotic analysis valid for thin double layers,
nor the presence of multivalent ions in a mixture of more than two components.

In this paper we examine the behaviour of the flow in a rectangular channel of a
mixture consisting of two or three possibly multivalent ionic species plus an aqueous
solvent; we consider for example, both an NaCl − H2O mixture and a mixture of
three electrolytes having several different valences, under the action of an electric
field in the primary direction of motion. However, the methods described here may
be applied to mixtures having an arbitrary number of ionic constituents of arbitrary
valence. In particular, we calculate the mole fractions of the ions and the potential
and velocity and consider the case of both overlapping and thin double layers. In
the latter portion of the paper, we consider the case of a three-component mixture
in the asymptotic limit of a thin electric double-layer thickness. We need not assume
symmetry about the centreline and so we consider both symmetric and asymmetric
boundary conditions on the potential. We consider the case of negatively charged
walls, as is common with silica at a neutral pH, and so we expect a surplus of cations
near the wall, while in the case of a positively charged wall, we would expect a surplus
of anions.

The electro-osmotic flow problem is driven by the presence of the electric double
layer (EDL) near the surfaces of the channel. The electric double layer is intrinsic to
the system since the walls are charged resulting in a non-zero electric potential and
hence an electric field. Bulk fluid motion is then created by the insertion of electrodes
upstream and downstream. The Debye-layer thickness is defined by

λ =

√
εeRT

FI 1/2
, (1.1)
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Figure 1. Geometry of the channel. u, v and w are the fluid velocities in the x, y
and z directions.

where F is Faraday’s constant, εe is the electrical permittivity of the medium, I

is the ionic strength, R is the gas constant, zi is the valence of species i and T

is the temperature. If the electric double layer is thin compared with the channel
dimensions the problem for the electric potential and the mole fraction of the ions is
a singular perturbation problem and the fluid away from the electric double layers
is electrically neutral. In this case, the actual thickness of the EDL, defined as the
position where the velocity reaches 99 % of its value in the core is approximately
δDL = dε where ε = λ/h and d is a number which depends on the ionic strength at
the wall. Here, δDL is a dimensionless length scaled on the channel height h, similar
to the dimensionless boundary-layer thickness in classical fluid mechanics. Typically,
for a relatively concentrated mixture, d ∼ 5 as for the Blasius boundary layer. We
also consider the case where ε ∼ 1 in which case the channel height is of the order of
the EDL thickness and the layers on the walls are overlapping. For extremely dilute
mixtures, the EDL thickness can be of the order of 100 nm. We assume that the
temperature is constant.

The purpose of the present paper is to present the theory of electro-osmotic flow
in a two-dimensional channel for the case where the Debye–Huckel approximation is
not valid. The geometry is depicted on figure 1. The plan of the paper is as follows. In
§ 2, the governing equations are derived; the flow field, the electric field and the mass
transfer problems are fully coupled. In the following section, we solve the equations
both for the case of a double layer that is much thinner than the channel height and
λ/h = O(1), and calculate the volume flow rate through the channel; as noted above,
the width of the channel W ∼ h. We will also investigate the differences between one-
dimensional and two-dimensional flow specifically for those cases that are symmetric
about the centreline.
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2. Governing equations
Let us now consider the mass transport in a liquid mixture of three components, say

water and a salt such as sodium chloride flowing in the channel depicted in figure 1.
The electric field in general can be composed of two components: an externally
imposed electric field, E0, and a local electric field present near the solid surfaces of
the channel corresponding to the presence of an electric double layer. In dimensional
form, the molar flux of species A for a dilute mixture is a vector and given by (Bird,
Stewart & Lightfoot 1960)

nA = −cDAB∇XA + uAzAFXAE∗ + cXAu∗. (2.1)

Here, DAB is the diffusion coefficient, c is the total concentration, XA is the mole
fraction of species A, which can be either the anion or the cation, uA is the mobility,
zA is the valence, E∗ is the total electric field and u∗ is the mass average velocity of
the fluid. The mobility uA is defined by the Nernst–Planck equation as uA = DAB/RT .
In the present paper, we assume that the electrolyte concentration is small enough
that the only interactions are between the electrolyte and solvent, so that we write
DAB = DA.

The coordinates (x, y, z) are non-dimensional; for example, x = x∗/L and the scaling
lengths in the three directions are (L, h, W ). Also (u, v, w) are the dimensionless
velocities in each of the coordinate directions (x, y, z); for example u = u∗/U0 where
u∗ is dimensional. Here, ε1 =h/L and ε2 = h/W . We assume h, W � L so that ε1

is small; here zA is the valence of species A. Re = U0h/ν is the Reynolds number
and Sc = ν/DAB is the Schmidt number, where ν is the kinematic viscosity and
U0 = εeE0φ0/µ is the velocity scale (Conlisk et al. 2002).

We assume that the dimensional potential is of the form

φ∗ = −E0x
∗ + φ∗

1(y
∗, z∗),

where it can be seen that φ∗
1 is the perturbation potential from the externally applied

field.
Note that

E0 = −∂φ∗

∂x∗ .

Non-dimensionalizing the equation for the potential as above, dropping the 1 on the
perturbation potential and assuming φy0 =φz0 = φ0, φ =φ∗/φ0,

ε2

(
∂2φ

∂y2
+ ε2

1

∂2φ

∂x2
+ ε2

2

∂2φ

∂z2

)
= −β

N∑
i=1

ziXi, (2.2)

where here φ is the dimensionless perturbation potential. Also β = c/I where c is the
total concentration and I is the ionic strength. Note that (2.2) treats the ionic species
as point charges. The channel is assumed long compared to its width and breadth, i.e.
ε1 is small and and ε2 = O(1). The largest inertial terms in the mass transfer equations
are of the order of ReSc and since the Schmidt number is large in liquids, and of the
order of 103, the calculations here will be valid for all Reynolds numbers of O(10−4)
and smaller. In this case, the governing equations become, to leading order, and for
a binary mixture,

∂v

∂y
+ A

∂w

∂z
= 0, (2.3)
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ε2

(
∂2u

∂y2
+ A2 ∂2u

∂z2

)
= ε1ε

2 ∂p

∂x
− β(zgg + zf f ), (2.4)

ε2

(
∂2v

∂y2
+ A2 ∂2v

∂z2

)
= ε2 ∂p

∂y
+ Λβ

∂φ

∂y
(zgg + zf f ), (2.5)

ε2

(
∂2w

∂y2
+ A2 ∂2w

∂z2

)
= ε2A

∂p

∂z
+ AΛβ

∂φ

∂z
(zgg + zf f ), (2.6)

ε2

(
∂2φ

∂y2
+ A2 ∂2φ

∂z2

)
= −β(zgg + zf f ), (2.7)

ε2

(
∂2g

∂y2
+ A2 ∂2g

∂z2

)
= βzgg(zgg + zf f ) − ε2zg

(
∂φ

∂y

∂g

∂y
+ A2 ∂φ

∂z

∂g

∂z

)
, (2.8)

ε2

(
∂2f

∂y2
+ A2 ∂2f

∂z2

)
= −βzf f (zgg + zf f ) − ε2zf

(
∂φ

∂y

∂f

∂y
+ A2 ∂φ

∂z

∂f

∂z

)
, (2.9)

where we have writtten the cation mole fraction as g and the anion mole fraction as f

and A= ε2 is the aspect ratio of the channel. Also Λ =φ0/E0h. The parameter ε = λ/h,
where λ is the Debye length. In the present investigation, we focus primarily on the
flow along the direction of the externally imposed electrical body force, although the
possibility of spanwise(w) and vertical(v) velocities is also explored.

To summarize, we have a series of seven equations in seven unknowns to solve
for the three-dimensional velocity field, the pressure, the potential and the two mole
fractions; the boundary conditions are given by

φ = 0; f = f 0, g = g0 at y = 0, z = 0, (2.10)

φ = φ1; f = f 1, g = g1 at y = 1, z = 1, (2.11)

u, v, w = 0 at y = 0, z = 0, y = 1, z = 1. (2.12)

For this simplified case, the dependent variables are functions of eight separate
parameters in addition to the three coordinate directions: ε, A, β , Λ, g0, g1, f 0 and
f 1. Consider the symmetric case here where g0 = g1 and f 0 = f 1. Then there are six
independent parameters. We can reduce this number by recognizing that β and ε

always occur in the ratio ε2/β . Further, rescaling the mole fractions on the value g0,
G = g/g0, F = f/g0 then the governing equations are invariant to the rescaling of the
mole fractions and the main parameter is now δ2 = ε2/βg0; the other parameters are
channel aspect ratio A and γ = f 0/g0. The boundary conditions now become

φ = 0; F = γ ; G = 1 at y = 0, z = 0, (2.13)

φ = φ1; F = γ ; G = 1 at y = 1, z = 1, (2.14)

and we have cut the number of parameters in half. In the asymmetric case where
the electric potentials at y =0 and y = 1 are not the same, there are three more
parameters corresponding to two sets of the ratio of wall mole fractions at y = 1 to
g0 and the value of the potential at y = 1.

Note that δ is a function of both geometry and concentration. This is an important
observation since it allows comparison of small channels at larger concentrations
with larger channels at smaller concentrations. For example, a value of δ =0.075
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corresponds both to a cation concentration of 0.15 mm with λ= 34 nm and a channel
dimension of 470 nm and to a cation concentration of 0.15 m and a channel dimension
of 15 nm with λ= 1 nm. Thus because physical limitations prevent the measurement of
velocity and concentration profiles under approximately h = 200 nm (Sadr et al. 2004),
modelling can be used to relate flows in nanoscale conduits to those in microscale
conduits where these profiles can be measured.

For computational purposes we must derive an equation for the pressure. As in
classical computational fluid dynamics, we differentiate the momentum equations and
after some algebra, we obtain a Poisson equation for the pressure in the form,

δ2

(
∂2p

∂y2
+

∂2p

∂z2

)
= Λ

(
∂2g

∂y2
+ A2 ∂2g

∂z2
+

∂2f

∂y2
+ A2 ∂2f

∂z2

)
. (2.15)

We now consider the case where δ ∼ ε � 1 before considering full numerical
solutions.

3. Asymptotic solution for binary electrolytes of arbitrary valence
In the case where δ � 1, we can obtain analytical solutions for the flow within the

EDL. This situation is a classical singular perturbation problem. Consider the case
of two species of arbitrary valence, with say X1 = g, X2 = f . It is easier to start in
the region near the walls. For example, near y = 0 we set Y = y/δ. Then using the
governing equations for the mole fractions, we find that for g,

∂

∂Y

(
∂g

∂Y
+ zgg

∂φ

∂Y

)
= 0. (3.1)

This is simply the one-dimensional Boltzmann equation which has the well-known
solution

g = g0 exp(−zgφ), (3.2)

where we have assumed that φ0 = 0. The solution for f follows immediately,

f = f 0 exp(−zf φ). (3.3)

To obtain the matching conditions, we find that the outer solution for the electrolyte
of positive valence, go, must be

go = lim
Y→∞

g = g0 exp(−zgφo), (3.4)

where the subscript ‘o’ denotes ‘outer’. Similarly,

fo = lim
Y→∞

f = f 0 exp(−zf φo). (3.5)

In the core region, it is obvious that for ε � 1,

fo = − zg

zf

go. (3.6)

Thus we have from the limit of the inner solution,

zgg
0 exp(−zgφo) = zf f 0 exp(−zf φo), (3.7)

and solving for the outer solution φo we find that

uo = φo =
1

zg − zf

ln
−zgg

0

zf f 0
. (3.8)
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This is the one-dimensional result for the symmetric case generalized to arbitrary
valence (Conlisk et al. 2002). The subscript o again denotes the outer solution valid
away from the wall. Clearly, zg �= zf in order to avoid a singularity. As in the one-
dimensional case (Conlisk et al. 2002), the result for the mole fraction is

fo =

√
− zg

zf

g0f 0 exp (−(zg + zf ) φo). (3.9)

Now consider the y-momentum equation. The appropriate balance is obtained by
considering the continuity equation where it is apparent that v ∼ δ. This means that
the left-hand side of (2.5) is O(δ) and the two terms on the right-hand side balance if

p = δ−2p1 + . . .

and thus
∂p1

∂Y
+ Λ

∂φ

∂Y
(g − f ) = 0. (3.10)

Equation (2.5) becomes

∂2p1

∂Y 2
= Λ

(
∂2g

∂Y 2
+

∂2f

∂Y 2

)
(3.11)

and it can be shown using the equations for f, g that (3.11) is the differentiated form
of (3.10). Integrating and putting p1 = 0 at the surface, we obtain

p1 = Λ (g + f ) − Λ(g0 + f 0), (3.12)

and so there is a pressure gradient generated within the EDL. The scaled version of
(2.6) shows that for uniform wall concentrations, the velocity w = 0. Clearly in this
situation, v = 0 from continuity. Note that in the case where the potential is symmetric
about the centreline, the equations for the streamwise velocity, u and the potential φ

are the same and solutions in the inner region can be calculated numerically (Conlisk
et al. 2002).

Clearly the solution in the boundary layers near z = 0, 1 will yield the same solution
as in the one-dimensional case and is formally equivalent to the solution on y = 0 for
the same boundary conditions for aspect ratio A= 1. For A �= 1, the boundary layer
variable near the sidewalls is Z = z/δA and so the effective boundary-layer thickness
is different from that on the top and bottom walls. Note that in the case where the
potential is symmetric about the centreline, the equations for the streamwise velocity,
u and the potential φ are the same and solutions in the inner region can be calculated
numerically (Conlisk et al. 2002).

In the case where there is a potential difference across the channel, the potential
can at most be a linear function of y and thus

φo =

(
1

zg − zf

ln
−zgg

1

zf f 1
− 1

zg − zf

ln
−zgg

0

zf f 0

)
y +

1

zg − zf

ln
−zgg

0

zf f 0
. (3.13)

Similarly, the mole fractions can at most be linear and for f we obtain

fo =

(
− zg

zf

g1f 1 exp
(
−(zg + zf ) φ1

o

)
+

zg

zf

g0f 0 exp
(
−(zg + zf ) φ0

o

))
y

− zg

zf

g0f 0 exp
(
−(zg + zf ) φ0

o

)
, (3.14)

and the velocity is given by

uo = φo − φ1. (3.15)
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4. Numerical methods
To consider overlapped double layers and in anticipation of extending the results

to arbitrary numbers of components of arbitrary valence we compute solutions
numerically. For both the symmetric and the asymmetric cases, we use second-
order central differences to approximate the derivatives in the governing equations.
This procedure leads to a system of nonlinear algebraic equations and Newton’s
linearization technique is applied to cope with the nonlinearity. In this technique,
we solve for the dependent variables in an iterative manner. The recurrence relation
between the k and (k + 1) iteration at each grid point is given by

Xk+1
i,j = Xk

i,j + DXk
i,j , (4.1)

with i = 2, . . . , N − 1 and j = 2, . . . , M − 1 and k > 0. Here DXk
i,j is the error of

approximation at the k th iteration and Xi,j represents the dependent variables ui,j ,
φi,j , fi,j and gi,j . The system of tridiagonal algebraic equations is solved using line
relaxation with an underrelaxation factor. The iteration procedure is repeated until
the following convergence criteria are satisfied

max
∣∣Xk+1

i,j − Xk
i,j

∣∣ < 


for i = 2, 3, . . . , N − 1; j = 2, 3, . . . , M − 1, where 
= 10−5.
For larger values of channel height, 
= 10−5 was used. In general, four-digit

accuracy was achieved in solutions for 81 and 161 points across the channel in all of
the variables for all of the runs made. For h = 20 nm and above, four-digit accuracy
was achieved for 161 and 321 points across the channel.

In order to obtain the results out to 100 nm numerically, we use the solution for
the channel of height h − 
h and the initial guess for the channel of height h. In
general, for smaller channel heights, 
h could be fairly large, but as h increases it
is difficult to converge for the larger values of 
h. Thus to reach 100 nm we used a
value 
h= 1 nm.

5. Numerical results for specified wall concentrations
We have produced results for channel heights up to 100 nm = 0.1 µm. For channel

heights larger than about 20 nm, for about a 0.1m mixture, the asymptotic analysis
discussed previously can be used. For small potentials less than about 26 mV we
would expect that the Debye–Huckel approximation holds, for which the Poisson–
Boltzmann distribution is linearized leading to analytical solutions for the velocity
and potential (Andreev et al. 1997; Yang & Li 1997. Here, we present results for
relatively large differences in mole fraction. In figure 2 are results for the velocity and
potential and mole fractions for channel height 5 nm. The concentrations shown here
correspond to 0.154 m of the cation and 0.0141 m for the anion. We use the notation
(g, f ) for the rescaled mole fractions depicted on the figures.

It should be pointed out that this case is near the limit where the finite size of the
ions would be expected to become important. The diameter of a water molecule and
common univalent ions is about three angstroms; thus the ‘liquid’ Knudsen number
defined as the ratio of a molecular diameter to the channel height is about 0.06. It
would be beneficial to compare these continuum results which treat the ions as point
charges with molecular dynamics (MD) simulations and this has already been done
in one dimension (Zhu et al. 2005) where it is shown that wall exclusion effects become
important at about h = 6 nm or about twenty molecular diameters. However, in the
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Figure 2. The dimensionless velocity and potential along with the mole fraction for h = 5 nm;
here δ = 0.23, A = 1. Here the electric field corresponds to 6 V over a channel of length
L = 3.5 µm. The mole fractions are scaled on g0. (a) Potential and velocity. (b) Rescaled mole
fractions for f 0 = f 1 = 0.000252 and g0 = g1 = 0.00276.
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Figure 3. Results for the dimensionless velocity and potential along with mole fractions
for the case of an NaCl–water mixture. Here the electric field corresponds to 6 V over a
channel of length L = 3.5 µm; the channel height h = 25nm. The mole fractions are scaled
on g0. (a) Velocity and potential. (b) Rescaled mole fractions for f 0 = f 1 = 0.000252 and
g0 = g1 = 0.00276.

one-dimensional case, the continuum solution is easily adjusted to account for the
ion exclusion effects. As in the one-dimensional case (Conlisk et al. 2002), the core of
the channel is not electrically neutral.

Results for h = 25 nm and 50 nm appear in figures 3 and 4. Note that the EDL
is extremely thin; by h = 100 nm, (figure not shown) the EDL thickness is negligible.
The familiar top-hat velocity profile appears as in the one-dimensional result and for
these cases where all of the EDLs are thin, the one-dimensional and two-dimensional
results for the velocity are equivalent. The value of the potential and velocity in the
core is about 1.189 for h = 50 nm which is very close to the asymptotic value of
φo = ln (g0/f 0)/2 = 1.195 for monovalent species. The boundary-layer thickness can
be defined, as in the classical high-Reynolds-number flow, as the position where the
velocity or potential reaches 99 % of its bulk value. The boundary-layer thickness will
depend on the molarity and for h = 25 nm for the molarities chosen, the boundary-
layer thickness is δ25 = 5.8ε and for h = 50 nm, δ50 = 5.7ε.
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Figure 4. As for figure 3, but for h =50nm.
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Figure 5. As for figure 3, but for a more dilute mixture of NaCl–water.
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Figure 6. Pressure distribution for the parameters of figure 2 and 3. (a) h = 5nm;
(b) h = 25nm.

In figure 5, results are given for ionic strength 10 times less than in the previous
figures for h = 25 nm. Here, δ = λ/h= 0.14. The results look like a channel much
larger at a smaller ionic strength and the EDLs are overlapping for this molarity. A
δ value of 0.14 is equivalent to a 1 µm channel at 10 µm concentration.

The pressures for h =5 and 25 nm are shown in figure 6. Here, the pressure is put
equal to zero on the boundary and note that the pressure drops in the core and is
symmetric about both axes. Here, we note also that the pressure gradients in both
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Figure 7. Results for the dimensionless velocity and potential along with mole fractions for
channel width W = 20 nm, h = 4nm so that the aspect ratio A = 0.2. Here, δ ∼ ε = 0.2. The
electric field corresponds to 6 V over a channel of length L = 3.5 µm. (a) Velocity and potential.
(b) Mole fractions f 0 = f 1 = 0.000252 and g0 = g1 = 0.00276.
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Mole fractions f 0 = f 1 = 0.000252 and g0 = g1 = 0.00276. (b) Plot of the velocity and potential
as a function of y for several channel widths.

directions exist because of the presence of the electric double layers on the sidewall
and the gradients exist despite the fact that the flow is one-dimensional.

The mole fractions, potential and velocity, are depicted on figure 7 for unequal
height and width. Note that the electric double layers are thin near the walls z = 0, 1,
but overlapping on y = 0, 1. This means that one-dimensional models will not be
accurate in describing the spanwise behaviour of the potential and velocities and
mole fractions. This is shown on figure 8(a). Here, we see that the two-dimensional
results are roughly half of the amplitude of the one-dimensional results. Figure 8(b)
shows results for the velocity and potential for varying channel width plotted against
channel height coordinate y. Note that the one-dimensional result is recovered at
a width of about 20 nm. However, the spanwise variation does not match the one-
dimensional result even for W = 20 nm as shown on figure 8(a).

Asymmetric results are presented on figure 9. The boundary conditions are chosen
to correspond to equal electrochemical potential at the walls since there can be no
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Figure 9. Results for (a) the dimensionless potential and (b) velocity along with mole fractions
for an asymmetric case. Here the electric field corresponds to 6 V over a channel of length
L =3.5 µm; the channel height h = 20nm and aspect ratio A =1. Wall molarity of cation
species: g = 0.154 m at y =0, g = 0.033m at y = 1, g = 0.724 m, at z =0 and g = 0.003m at
z = 1; in the same order f = 0.014m, 0.066m, 0.003m, 0.075m. The potential at the walls, also
in the same order, φ = 0, 0.04V, −0.04V, 0.100V and the value of ε =0.04.

net flow through the walls. Note the appearance of reversed flow in figure 9 which
significantly reduces the flow rate. Thus, adjusting the wall potential can have a
significant effect on the transport of species through the channel.

6. Reservoir–channel systems
6.1. Equilibrium considerations

Nanochannel systems are usually connected to upstream and downstream reservoirs
in which the electrodes are placed. In experiments, the molarities in the reservoirs are
known and the mixture is electrically neutral there; a sketch of a typical device is
shown in figure 10. We calculate the wall mole fractions using the requirement that
the electrochemical potential in the reservoirs far upstream be the same as the average
value at any channel cross-section (Zheng et al. 2003). This requirement leads to the
Nernst equation (Hunter 1981) which is given by


Ψ =
RT

ziF
ln

ciR

c̄iC

(i = 1, . . . , N ), (6.1)

where ciR and c̄iC are the average values of the concentration of species i in the
reservoir and the fully developed region within the channel, respectively.

We assume a negatively charged wall, as is customary for a silicon channel in which
the negative charge is due to deprotonated silanol groups. Then electroneutrality in
the channel requires

zf cf +
∑

i

zi c̄iC = 0, (6.2)

where zf and cf are the valence and the concentration of the fixed charges on the
wall. Electroneutrality in the reservoir requires∑

i

ziciR = 0, (6.3)

where usually in experiments, ciR is known for each species. Equations (6.1) and (6.2)
are N + 1 equations in N + 1 unknowns for the average molar concentrations in the
channel and the Nernst potential 
Ψ .
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Figure 10. Nanopump system (iMEDD, Columbus, Ohio) showing upstream and
downstream reservoirs. The molarity (i.e. ionic strength is assumed known in the reservoir.

If the volume of the reservoir is much larger than the volume of the channels, as
is the case in practice, then the concentration in the reservoir will be fixed at the
value of the concentration prior to the initiation of flow into the reservoir. To obtain
each of the average concentrations in the channel, we equate the Nernst potential
for each of the species which leads to

c̄iC =

(
c̄1C

c1R

)zi/z1

ciR. (6.4)

where species 1 is, say, the most populous ionic species. Substituting into (6.2) we
have

zf cf + z1c̄1C +

N∑
i=2

ziciR

(c1R)zi/z1
(c̄1C)zi/z1 = 0, (6.5)

This is a single equation for the average concentration of species 1 in the channel c̄1C ,
assuming the surface charge density is known.

To be dimensionally consistent in (6.5), the surface charge density should be
converted to mol· l−1 (m). To do this we assume that the charges are uniformly
distributed and the result is

cf =
Aσ

1000V0F
, (6.6)

where A is the surface area and V0 is the volume. The factor 1000 converts m3 to
litre.
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The average concentration in the channel is defined in dimensional form as

c̄i =
1

h

∫ h

0

ci dy∗, (6.7)

and in non-dimensional form, dividing by the total concentration of the mixture, we
have

X̄i =

∫ 1

0

Xi dy (6.8)

where Xi is the mole fraction and for example, X̄i = ḡ for the cation and X̄i = f̄ for
the anion in a binary electrolyte mixture. Since the governing equations are nonlinear
and iteration is required anyway, we iterate on the wall mole fractions as well. The
procedure is the following. At the first iteration, the wall mole fraction is assumed to
be the average mole fraction as calculated above. After convergence of the governing
equations, the average mole fraction is calculated from (6.8). Clearly, the only way
that these two quantities can be equal is if the mole fractions across the channel are
constant. This is not the case and so the equations are solved again with the new wall
mole fraction defined by the equation, for example for the cation g0

g0
m+1 = g0

m

ḡ

ḡm

,

where m denotes the iteration number and ḡ is the average value of the mole fraction
obtained by the procedure described above and is fixed. The form of this equation is
motivated by the fact that a higher value of the average mole fraction will lead to a
higher wall mole fraction. The iteration procedure continues until successive iterates
of the wall mole fraction differ by less than 10−4.

As mentioned above, the surface charge density is assumed. To check the
calculations are consistent with the assumed surface charge density, we recalculate
the surface charge density from the formula

σ = −εeRT

εhF

∫ 1

0

(g − f ) dy. (6.9)

If the recalculated charge density is equal to the assumed charge density, the solution
is found. If not, the surface charge density is changed and the program is run again.
It turns out that there is a unique solution where the assumed surface charge density
matches the post-convergence calculated value.

The procedure for calculating the wall mole fractions simplifies in the asymptotic
case. For the case of a binary electrolyte, the three unknowns corresponding to the
Nernst potential and the two wall mole fractions may be obtained by using the outer
solutions of the corresponding quantities; this avoids having to integrate the mole
fraction across the channel numerically. In this way, we solve


ψ =
1

zf

ln f R − ln fo, (6.10)


ψ =
1

zg

ln gR − ln go, (6.11)

and the electroneutrality condition. It is clear that this procedure may be extended to
an arbitrary number of electrolytes of arbitrary valence.
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mm µe µm ζe ζm ε = δ B4O7(wall) Na(wall) σ (Cm−2)

0.02 5.51 × 10−4 6.10 × 10−4 −0.173 −0.197 2.17 × 10−4 <10−6 0.028 −0.007
0.2 4.60 × 10−4 5.30 × 10−4 −0.138 −0.170 9.85 × 10−5 <10−6 0.133 −0.0154
2 3.52 × 10−4 3.43 × 10−4 −0.098 −0.111 9.60 × 10−5 2.80× 10−5 0.141 −0.0154

20 1.71 × 10−4 1.74 × 10−4 −0.054 −0.056 8.59 × 10−5 0.0023 0.1734 −0.0154

Table 1. Mobility and ζ -potential for the ORNL data for the 10.4 µm×26 µm channel. Note
that in this regime δ = ε � 1 so that the asymptotic theory applies. The mobilities are in
cm2 V−1 s−1 and the ζ -potential is in V.

6.2. Asymptotic results for calculated wall concentrations for binary electrolytes

We present numerical results for the inner region near the wall, using the outer
solution values as boundary conditions. The wall mole fractions are calculated based
on the procedure just described for a given ionic strength in the upstream reservoir.

Consider first the case of a binary electrolyte system. Figure 11 shows velocity,
potential, mole fractions and shear stress for three different square channels plotted
against the outer variable. The height of the three channels are 25, 50 and 100 nm.
As the channel height increases, note that the EDL becomes thinner, and the familiar
top-hat profile, characteristic of electro-osmotic flow in micro-channels, appears.

7. Comparison with experimental data
We have compared the model to two sets of experimental data and the comparisons

are very good (Zheng et al. 2003). We have also compared the model described here
with Sadr et al. (2004). Here, we compare the results for the calculated wall mole
fraction with the experimental data provided to us by J. M. Ramsey (Oak Ridge
National Laboratory, personal communication, 2002) for a rectangular channel. The
mixture is a sodium tetraborate–methanol solution with a viscosity of 0.00168 Pa s
and a dielectric constant of 59.24, as supplied by Ramsey’s group. The mixture is
a 1:1 electrolyte and the molarity in the upstream reservoir ranges from 0.02 mm

to 150 mm; the channel is 10.4 µm × 26 µm as in the Georgia Tech case. The electric
double layer is very thin so that asymptotic analysis for calculated wall concentrations
is sufficient for the comparison. The experimental data correspond to the average
velocity divided by the electric field and this is called the electro-osmotic mobility

µeo =
1
2
U0 ln(g0/f 0)

E0

,

which is the result for the outer velocity given by (3.8). Note that the mobility is
independent of the electric field since U0 is linearly dependent on the electric field.
The present model for the case of a thin electric double layer can predict the wall
ζ -potential, which is measured by the Ramsey group.

The results are depicted on table 1 for four concentrations in the upstream reservoirs.
Note that the wall concentration of the sodium is much greater than that in the
reservoir for the more concentrated cases. In the present case, since the EDLs are
thin, we can define the ζ -potential as the negative of the value of φ in the core.
On a dimensionless basis since φ denotes the perturbation from the wall potential
(φ = 0 at the walls), we have

ψ = ζ + φ. (7.1)
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Figure 11. Asymptotic results for the dimensionless velocity and potential along with mole
fractions (unscaled) and shear stress plotted in the outer variable for the case of an 0.1m

1:1 electrolyte–water solution in the reservoir. Here the electric field corresponds to 0.05 V
over a channel of length L = 3.5 µm; the channel height h = 25, 50, 100 nm and the reservoir
concentration is 2 mm. (a) Velocity and potential. The solid line is the result given by (3.8). (b)
Mole fractions. (c) Shear stress.
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Defining ψ = 0 in the core, results in

ζ ∗ = −φ = − 1
2
ln

g0

f 0
. (7.2)

In dimensional form, which is the value that appears in table 1, we have

ζ = −φ∗ = − 1
2

RT

F
ln

g0

f 0
. (7.3)

The values compare well with the experimental data for both mobility and ζ -potential.

8. Asymptotic solution for ternary electrolytes
Consider now the case of a three-electrolyte system. Denote the species by (g, f, r).

Then the inner solution is the Poisson–Boltzmann expression as above,

Xi = X0
i exp(−ziφ), (8.1)

where Xi is any one of (g, f, r). By the same process as for the N = 2 case, the outer
solutions can be obtained and the results for the symmetric case are

go =

√
−zf g0f 0 exp(−(zg + zf )φo)

zg + zr (r0/g0) exp((zg − zr )φo)
, (8.2)

fo =

√
−zgg0f 0 exp(−(zg + zf )φo)

zf + zr (r0/g0) exp((zf − zr )φo)
, (8.3)

ro = −zf f + zgg

zr

. (8.4)

The outer solution for φ is given by the solution of the equation

exp((zg − zf )φo) = − zgg
0

zf f 0
− zrr

0

zf f 0
+ exp((zg − zr )φo) (8.5)

and uo = φo in the symmetric case.
We can determine the potential and hence velocity analytically for special cases. If

zr = zg , then

φo =
1

zg − zf

ln

(
−zgg

0

zf f 0
+

−zrr
0

zf f 0

)
. (8.6)

If zr = 2, zg = 1, zf = −1, then

x3 − g0

f 0
x − 2

r0

f 0
= 0, (8.7)

where x = exp(φo). These valences are appropriate for a sodium chloride–calcium
mixture.

If zr = zg , we have

φo =
1

zg − zf

ln

(
zg(g

0 + r0)

−zf f 0

)
, (8.8)
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For zr = zf or zf = zg , equation (8.5) can be solved similarly. Next if zg + zf = 2zr ,
the outer solution is given by

φo =
1

zg − zr

ln

(
−zrr

0 ±
√

(zrr0)2 − 4zgzf g0f 0

2zf f 0

)
. (8.9)

Similarly, cases such as zg + zr = 2zf or zf + zr = 2zg can also be solved. Finally, if
2zg + zr = 3zf , we have

φo =
1

zg − zf

ln

(
t

6zrr0
− 2zf f 0

t

)
, (8.10)

where t = ((−108zgg
0 + 12

√
3

√
4(zf f 0)3 + 27(zgg

0)2zrr
0

zrr0
)(zrr

0)2)1/3.

For the asymmetric case, we find

go =
(
g1

o − g0
o

)
y + g0

o, (8.11)

fo =
(
f 1

o − f 0
o

)
y + f 0

o , (8.12)

where, for example, f 0
o is the limit of the outer solution near y = 1

f 0
o =

√
−zgg0f 0 exp

(
−(zg + zf )φ0

o

)
zf + zr (r0/g0) exp

(
(zf − zr )φ0

o

) . (8.13)

The potential is given in the same way as for N = 2 by,

φo =
(
φ1

o − φ0
o

)
y + φ0

o . (8.14)

The presence of a small amount of a divalent cation in a channel having negatively
charged walls has a great effect on the flow (Zheng et al. 2003). Figure 12 shows
the asymptotic solutions for a 1:1:2 electrolyte mixture for surface charge density
σ = − 0.0154 Cm−2 on the channel wall. Note that the core is still electrically neutral
and the electric double layer thins considerably, as before. These results are different
from the binary case and a bivalent anion will have little or no effect on the flow
compared to the binary case (Zheng et al. 2003).

9. Summary
We have produced analytical and numerical results for the electro-osmotic flow in

a rectangular channel, both in the case of overlapped double layers and in the case
of thin double layers. In cross-section, when the EDL is very thin, the results look
similar to those for a one-dimensional or slit-pore channel. However, if the EDLs
are overlapping in one direction, one-dimensional flow models will not match the
two-dimensional results in the dimension normal to the overlapped dimension. The
one-dimensional result in the overlapped direction is recovered at about a channel
height of 20 nm for the molarities chosen.

The results show that the Debye-layer thickness is not a good measure of the
actual width of the electric double layer. This work has shown that for the molarities
considered, the actual dimensional width of the EDL is δ∗ ∼ 6λ, similar to the case in
high-Reynolds-number flow.

We have also shown how non-zero wall potentials can produce reversed flow.
Thus, chemically treating a wall can have significant effects on the character of the
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Figure 12. Results for a 1:1:2 electrolyte mixture for channel heights h = 25, 50 and 100 nm.
The width of the channel is 100 µm, the surface charge density σ = −0.0154Cm−2, and
the concentration of electrolytes in the reservoir is 0.002 m. (a) Mole fractions near the
wall. (b) Potential and velocity. (c) Shear stress.
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flow. Theoretically, the proper adjustment of wall potential and hence surface charge
can result in either mixing or separation and these phenomena are currently being
explored.

Analytical solutions for the case of thin double layers characterized by δ ∼ ε � 1
have been shown to compare well with experimental data for rectangular pores
generated by Ramsey (Oak Ridge National Laboratory, personal communication,
2002).

We have produced results for channel heights as small as h = 5 nm. This case is near
the limit where the finite size of the ions would be expected to become important.
The diameter of a water molecule and common univalent ions is about 3 Å; thus the
‘liquid’ Knudsen number defined as the ratio of a molecular diameter to the channel
height is about 0.06. It would be beneficial to compare these continuum results with
MD simulations to determine if the two-dimensional case is significantly different
from the one-dimensional case where the continuum results can easily be adjusted to
match the MD solutions (Zhu et al. 2005). It is desirable to have continuum models
of nanofluidic devices since nanoscale devices cannot be designed solely by running
MD simulations because of the significant computation time required (some weeks).

In addition, many biological problems require the solution for more than two
species. This is the case for modelling the transport of a biomolecule in an electrolyte
solution. We have presented analytical results for the outer solution for several
parameter ranges of the relative valences for the case of three species in the case
where ε � 1. We have also presented numerical results for the inner solution in the
case of three species containing a bivalent cation (z =2).

Because of the assumption of fully developed flow, the velocity is one-dimensional
and no spanwise motion can occur. Future work will focus on the case where the
wall potentials are not uniform, leading to multi-directional flow and the formation
of complicated vortical flow patterns.
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